

Through-Wall Detection and Imaging of a Vibrating Target Using Synthetic Aperture Radar

Mr. Brandon Corbett Dr. Daniel Andre Dr. Mark Finnis

Helsinki NATO SET 247: 8/9 May 2017

www.cranfield.ac.uk

- One of the key desirable outcomes of the Remote Intelligence of Building Interiors (RIBI) programme is in the detection of objects and activities within closed buildings.
- One such activity of interest is the use of running machinery.
- Low frequency synthetic aperture radar can provide one such solution, to through-wall remote sensing.
- Therefore the detection and imaging of a vibrating target behind a wall, using SAR, will be the focal point of this piece of research.

SAR Theory – Vibrating Target

Figure 9.27 Contour plot in usual SAR image.

[2] Carrara, W. and Goodman, R.: 'RMM. Spotlight Synthetic Aperture Radar Signal Processing Algorithms', Artech House, 1995

Simulation - Vibrating Target Displacement

$$y_{vib}(N_x) = y_0 + A_{vib} \cdot \sin\left(\omega_{vib} \frac{Ap(N_x)}{2}\right)$$

$$y_{vib}(N_x) = y_0 + A_{vib} \cdot \text{signum}\left(\sin\left(\omega_{vib}\frac{Ap(N_x)}{2}\right)\right)$$

A 10 [Hz] vibrational frequency, over the 3.5 [m], is therefore equivalent to a 2.06 [m/s] constant antenna velocity.

[3] Weisstein, E.:. 'Square Wave. Mathworld-A Wolfram Web Resource', URL: http://mathworld.wolfram.com/ SquareWave.html., 2017

Simulation - SAR Image of a Vibrating Target

6

Simulation - Parameters

Parameter	Value
Aperture [m]	3.5
Azimuthal Samples	351
Centre Frequency [GHz]	5.5
Bandwidth [GHz]	$2 (f_{max} = 6.5 \& f_{min} = 4.5)$
Frequency Samples	801
Antenna Height [m]	2.79
Range to Wall & Image Centre [m]	10
Range to Target [m]	9,11
Image Formation Algorithm	Backprojection [6]
Filters	None
Windowing e.g. Hamming	None
Nominal Resolution [m]	0.08

[4] Gorham, L and Moore, L.: 'SAR image formation toolbox for MATLAB', SPIE Defence, Security, and Sensing. International Society for Optics and Photonics, 2010

Simulation – Through-Wall Signal Model

Electromagnetic Wave Propagation

[5] Sadiku, M.: 'Elements of Electromagnetics', Sixth Edition. Oxford University Press, 2014, pp.410-472

[6] Balanis, C.: 'Advanced Engineering Electromagnetics'. John Wiley & Sons, 1989

[7] Morrow, I and Van Genderen, P.: 'A polarimetric near-field backpropagation algorithm for application to GPR imaging of mines and minelike objects', Proceedings of SPIE, the International Society for Optical Engineering, 2001

Simulation – Through-Wall Signal Model

Electromagnetic Wave Propagation

$$P_{hc} = e^{-i\left(\sum_{m=1}^{m_t} \hat{k}_m R_m\right)} \cdot e^{-i(kR_{sc})}$$

"Through-Wall" Signal Model: Phase History

Simulation – Through Wall SAR Image

→ = "Real world" location of scatterer.

→ = "Shifted" location of scatterer, within SAR Image

Simulation – Through Wall & Target Vibration

→ = "Real world" location of scatterer.

→ = "Shifted" location of scatterer, within SAR Image

Experimentation – Measurement Parameters

Parameter	Value
Aperture [m]	3.5
Azimuthal Samples	351
Centre Frequency [GHz]	5.5
Bandwidth [GHz]	4 ($f_{max} = 7.5 \& f_{min} = 3.5$)
Frequency Samples	1601
Antenna Height [m]	2.79
Range to Wall & Image Centre [m]	10
Range to Target [m]	11
Wall Material	Standard Concrete Masonry Unit "Breezeblock".
Wall Height [mm]	645
Wall Width [mm]	876
Wall Thickness [mm]	97
Target	Trihedral
Target Size [mm]	250 × 250 × 250

Experimentation – Image Formation Parameters

Parameter	Value
Image Formation Algorithm	Backprojection [6]
Filters	None
Windowing e.g. Hamming	None
Nominal Resolution [m]	0.08
Image Orientation	Ground plane.

[4] Gorham, L and Moore, L.: 'SAR image formation toolbox for MATLAB', SPIE Defence, Security, and Sensing. International Society for Optics and Photonics, 2010

Experimentation – Monostatic Measurements

- 10 [Hz] vibrational frequency, with a 5 [mm] amplitude.
- Hence representing an effective 2.06 [m/s] constant antenna velocity.

Target "Shift" Comparison

→ = "Real world" location of scatterer.

= "Shifted" location of scatterer, within SAR Image

Monostatic Simulation

Combination of multiple radar scans undertaken at the same time.

Single Vibrating Isotropic Point Scatterer: Sinusoid Vibration

Intensity [dB]

Bi-Static Simulation

20

Experimentation – Multistatic Dataset

Bi-Static Through Wall SAR Image - Stationary Target Max dB:-58.8398

Experimentation – Multistatic Dataset

Bi-Static Through Wall SAR Image - Sinusoid Vibration Max dB:-58.8277

- The results show a vibrating target can be detected and imaged behind a wall, using low frequency SAR.
- A through-wall SAR image collection of a vibrating target has been successfully modelled within a simulation environment.
- Simulation results have been successfully validated against experimental measurement data using the Cranfield GBSAR system.
- Multistatic datasets show how different radar geometries can reveal new aspects of a vibrating targets paired echoes location, size and occurrence and therefore how they appear within the SAR image.
- The Cranfield GBSAR system is currently being upgraded to a full SAR 3D collection system. This will allow for complete 3D SAR datasets to be collected, and therefore high resolution 3D SAR images to be produced.

Thank you to DSTL for funding this piece of work under the RIBI programme.

Thank You for Listening Any Questions?

www.cranfield.ac.uk

T: +44 (0)1793 785810

- @cranfielduni S
- - @cranfielduni
- ſ /cranfielduni